What we’re debating when we debate “misconceptions”

Is ‘misconceptions’ a bad word? I’ve had the conversation about misconceptions a number of times, most recently when I wrote this post. Here is a bit from the conclusion:

We see misconceptions in children because it really is true that there’s stuff that they don’t yet know. Noticing this doesn’t have to be an act of violence — in fact, I don’t think that it usually is. Usually it’s like me playing with my son and noticing there’s stuff he doesn’t yet know how to do, even as my mind is blown because oh my god my son is into puzzles! When did our baby turn into a kid?

Is it good pedagogy to ask people who don’t already see their pedagogy as abusive to forswear from using words that they use all the time? Isn’t this exactly the sort of “intellectual violence” that we’re being urged to refrain from? Shouldn’t we start with the way people actually see the world, rather than asking them to use language that is not their own?

That excerpt did not convince anybody at all, but my goal here isn’t to convince. Really all I want to do is bring up something I learned about the constraints of this argument.

There are a couple people I’ve met who have flirted with the idea of cutting out all evaluative language from discussions of teaching, but it’s largely an unsustainable position. You can’t cut out value from teaching, and the thought that you can is a bad mistake. Even if you don’t talk of “misconception” you’re still in need of language to describe thinking that isn’t yet what it could be. Maybe there are no misconceptions, but there is thinking that is e.g. inflexible, procedural, memorized, additive-but-not-yet-multiplicative, trick-reliant, stage one, whatever it is you want to say.

Plus, the math education community very clearly want to be able to understand problematic language and ideas for what they are. We want to be able to call ideas or patterns of thought racist, sexist, colonialist, etc. That’s very different than the “all thinking is just thinking” position.

And so the discussion is only ever about what is particularly harmful (or not) about the term “misconception” and its popular usage. Though people frequently talk about the issues with evaluative language in general when discussing misconceptions, that argument just confuses things. We need to be able to talk about thinking in terms of what it could, even should ideally be.

So there are really just two questions that are relevant for this discussion. Is the term “misconception” particularly harmful, compared to other evaluative language? And even if the term is intrinsically fine, is it used in particularly harmful ways?

I’ve shared my answers, but I’d make the case that those are the right questions.

Quick direct instruction and interesting practice at math camp

Today is my first day of summer break, sort of. I spent the last six weeks working for a wonderful math camp where the teaching is so much fun.

My class is the closest that students come to school content during camp. It’s a fractions class that students get placed into based on an assessment. If the camp thinks that students could use more time working on fractions — that’s who I teach.

That said, the course content is tricky because I don’t want to simply repeat what they’ve seen in school. That would be boring for a lot of kids, and I’m aiming to approach familiar ideas in unfamiliar ways. I’m trying to work on skills, but from interesting perspectives.

Here’s a one-two-three sequence from my fractions course that I think worked particularly well.

First, I ask students to think about visuals. This was a focus of the previous lesson, but I want to make sure every students has it at the front of their minds.

Screenshot 2019-08-13 at 7.12.43 AM.png
Source for image is fractiontalks.com

I’m trying to give everyone a chance to figure out what fraction a piece is by multiplying. (“There are four pieces, this is divided into fourths, that would make sixteen in total.”)

I’m teaching this both because it’s a useful bit of visual fluency, but also because I want to use this as part of my direct instruction.

Next is the direct instruction. I’m trying to teach students a mental shortcut: if you’re dividing a fraction by an integer (e.g. 1/2 divided by 10 is 1/20) you can multiply the denominator by the integer because that’s simply making the pieces 10 times smaller. I use visuals to explain this.

IMG_3147.JPG
This is a classroom poster with a version of my explanation. Below it is the next mental strategy I teach in the course. 

I immediately give students a few chances to try out this new technique on some mental math problems. (Below is my little cheat sheet — this is what I ask students, but I don’t give them this paper.)

Screenshot 2019-08-13 at 7.12.57 AM

That’s the basics. But how are we going to practice it further? And how are we going to keep it interesting, and make sure students start using this technique in other contexts?

I then move to the third activity in this lesson, some mobile problems (designed by me on the EDC site). They’ve been carefully designed to give us a chance to use that mental shortcut we’ve just studied.

Screenshot 2019-08-13 at 7.42.39 AM.png

A lot of the lessons in my fractions course seem to follow something like this pattern: reminder, quick explanation, interesting practice.

What exactly is it that worked about this? I think this pattern of quick direct instruction followed by interesting practice is a useful one. Of course not every topic is amenable to quick direct instruction (some skills need to be taught in larger chunks) but some are. And after some quick “are we on the same page” questions, it was nice to follow it up with interesting practice. And what made it interesting? I think that it looked different than the direct instruction, but there was still the chance to use it frequently.

This is a way of engineering challenging classroom experiences around stuff that you want to just explicitly teach. I think a lot of people think of these things as incompatible, but they clearly aren’t. At the same time, for a lot of my groups during the year I am trying to make things more accessible — I’m not trying to make it more challenging.

Or maybe I should be? Maybe this pattern of instruction would work just fine in my school-year work. One issue during the year is that I’m much more cautious about whether the practice is actually going to help with the skill. There is a risk to practicing in a different context than instruction. It’s always possible that kids won’t make the connections, that it will be either too hard or students won’t actually practice the thing you thought they would.

So, I’m not sure whether this is something I’ve learned about teaching camp or teaching school or teaching math. Time will tell, I guess.

Q&A on Humanizing Mathematics

Do you like students and mathematics? 

Yes, definitely.

Do you want students to know that their teacher cares for them? Is curious and interested about their passions? 

Yes!

Do you want to help your students understand what is beautiful and vibrant about mathematics as a discipline?

Yes. Of course I balance that with all sorts of other competing desires (they and their parents have goals too) but, in general, yes.

Do you like the phrase “humanizing mathematics”? 

No, I do not.

How about “math as a human endeavor,” with emphasis on “human”?

No, I don’t like that either.

That seems ridiculous. Do you disagree that math is something done by humans

Of course I don’t disagree — who else could be doing the math?

No no, that’s not the point at all. The point is that the things that humans do, we also do in math. Humans play, mathematicians play. Humans love beautiful things — well, so do mathematicians. Truth, Justice, Love: human values, and mathematical values too. 

Hey, did you read Francis Su’s Mathematics for Human Flourishing?

Yeah, I totally did. But I still don’t like this way of talking about math or math teaching.

Are you just being annoying? Are you trolling?

I don’t think so?

So what’s your deal?

Is work human? Is understanding human? Is thinking human? I’m just confused as to what it means for students to think that math is non-human, or not done by humans (with emphasis).

Aren’t they doing mathematics in their classrooms? Aren’t they human?

But the point is students don’t think of mathematics as something they can create. Do students see it as something they can love? Can they seem themselves doing it outside of school? Do they see it as something that was just done by the INVENTORS OF MATHEMATICIANS in some distant past, or could they see themselves and people who look like them doing it?

Is that what it means to be human?

Come on now, of course it is!

No, really. Is the implication here that you’re only human if you are creating mathematics, not if you’re learning someone else’s mathematics?

Is this philosophy? I hate philosophy.

Don’t worry then, this is not philosophy.

Good. Humans are creative and enjoy creating things. I agree that you’re not somehow being not-human if you aren’t being creative, but being creative is to be fully human.

I disagree, and I think that’s a disturbing idea.

What?!

Really! Tell me this: is it a good thing to tell students that if they don’t end up in a creative line of work they somehow aren’t being fully human? That if someone is working as a home aide, an Uber driver, a warehouse worker, that they aren’t fully human?

I don’t think it’s awful to say that those lines of work are less creative and therefore less meaningful. Therefore less of an expression of one’s humanity. We should hope to prepare every student for creative, meaningful and (therefore) more human work.

I’m just not comfortable with it.

Another thing: are we sure that our mathematical values are really universal? I once wrote a piece about how in Ancient Greece there were two vibrant mathematical cultures: one that is all about play, love, the abstract, etc., and the other about algorithms, application, practical knowledge.

When we tell our students that true human flourishing in mathematics is all about the playful, beautiful, loving side of mathematics, do we alienate some students who (legitimately, it seems to me) are interested in using math for the sake of other things? I think we’re taking a narrow slice of the mathematical world and making a claim for universality when we slap it with the “human” label.

Wait, are you sure this is not philosophy?

I promise.

So you don’t like the phrase. Don’t use it — why are you making such a big deal about this?

First, I apologize if this sounds like a big deal. I don’t think it’s a big deal.

But I think this matters. Talk of “math as a human endeavor” is relatively new (to me) but the message behind it is not new. For decades, progressive math educators have been agitating for students to do a wider range of mathematical activities, and to thereby see themselves as creators (discoverers) of mathematics. When you step behind the new way of putting it, how different is this message from the message of: inquiry, discovery, creativity, doing math, math as a verb, and so on?

I don’t think it’s very different at all, this call feels familiar.

And so why not call it using the more familiar language? If it’s a call for doing certain things in class because they’re important, let’s talk about that. It’s clearer.

You’re missing the point, which is this new language of “human endeavor” is a chance to unify a bunch of different activities under a single value: humanity. Yeah, these activities and ideas have frequently gone together in the past, but this is a new way to unify them under a single header.

But what is that value, exactly? The valuing of humanity? What does that mean?

Sigh, we’ve been through this. It’s the idea that we want students to know they can be fully human in math class…

But that’s the thing! We’re taking this controversial package of views about teaching and saying, look, this isn’t radical. It’s just being human. You don’t disagree with being human, do you?

And of course I don’t! I love my students and I want them to be able to be served well by mathematics and school. I don’t know how to convince you of this through words — I really do care, a lot.

It may or may not be a good idea to teach for a growth mindset, to use certain routines, to give kids a chance to explain themselves, to give kids chances to act like mathematicians, to talk about different mathematicians, to share new research, and so on, and so on, and I really do many of these things. But my vision of humanity is big enough to realize that this is not what it takes for something to be a human endeavor.

You’re getting pretty worked up about something you don’t think is a big deal.

I’m sorry, it’s really a bad habit.

Are you going to get in trouble for saying this?

I really hope not.

Well, good luck to you!

Thanks!

How does this end?

I don’t know.

I mean the Q&A.

I know what you meant. I don’t know.

Should it keep going? This is getting weird and cutesy.

Alright, you hang up first.

No, you.

OK, we’ll do it together. One, two,..

Are you still there?

You didn’t hang up!

This is getting silly.

OK, I’ll just stop. Three!

This post is part of the Virtual Conference on Humanizing Mathematics.